Iterative methods for solving $A x=b$ where A is non-symmertric.

GMRES (Generalited Minimum Residual) method

The kth iteration of GMRES is the solution x_{k}
to the least squares problem

$$
\min _{x \in x_{0}+K_{k}}\|b-A x\|_{2}^{2} \Rightarrow \nabla\|b-A x\|_{2}^{2}=2 A^{T}(A x-b)=0
$$

Step2 in CG $\Rightarrow \underbrace{\left(b-A x_{k}\right)^{T}}_{r_{k}} A_{\epsilon K_{k}}^{J}=0 \Rightarrow r_{k}$ is nolonger \perp to K_{k}
Step3 in CG $\stackrel{x_{k+1}=x_{k}+\alpha_{k+1} p_{k+1}}{\Rightarrow} \alpha_{\mathrm{k}}\left(J A p_{k+1}\right)=J\left(r_{k}-r_{k+1}\right) \neq 0$
\Rightarrow no A-orthoganoal property for p_{k+1}

Consider $y \in K_{k}$ and $K_{k}=\operatorname{span}\left\{v_{1} \cdots v_{k}\right\}=V_{k}$
One must have $x_{k}=x_{0}+V_{k} \cdot y$ for some y (coefficient vector)
The minimization problem can be rewritten as following:

$$
\begin{aligned}
\min _{x \in x_{0}+K_{k}}\|b-A x\|_{2} & \equiv \min _{y \in R^{k}}\left\|b-A\left(x_{0}+V_{k} y\right)\right\| \\
& \equiv \min _{y \in R^{k}}\left\|r_{0}-A V_{k} \cdot y\right\|
\end{aligned}
$$

This ia a standard least Square problem.
One can solve it by $Q R$ or the Gram-Schmidt orthogonalization.

Gram-Schmidt orthogonalization procedure:
(Arnoldi process) $\quad V_{K}=\operatorname{span}\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$

1. Define $r_{0}=b-A x_{0}, v_{1}=\frac{r_{0}}{\left\|r_{0}\right\|_{2}}$
2. For $i=1 \sim k-1$, (restart with new $r_{0}=b-A x_{k}$ when needed)

$$
\begin{aligned}
& v_{i+1}=\frac{A v_{i}-\sum_{j=1}^{i} \overbrace{\left[\left(A v_{i}\right)^{T} v_{j}\right]}^{h_{j i,}} \cdot v_{j}}{\left\|A v_{i}-\sum_{j=1}^{i}\left[\left(A v_{i}\right)^{T} v_{j}\right] \cdot v_{j}\right\|}\binom{\text { the algorithm breaks down when } h_{i+1, i}=0}{\Rightarrow \text { restart is needed }} \\
& \Rightarrow A_{n \times n} V_{n \times k-1}=V_{n \times k} \cdot H_{k \times k-1} ; \mathrm{H}=\left[\begin{array}{cccccc}
* & & & h_{1, i} & * & * \\
* & \ddots & & \vdots & * & * \\
& \ddots & \ddots & \vdots & & * \\
& & \ddots & \vdots & & \vdots \\
& & & h_{i+1, i} & * & * \\
& & & & * & * \\
& & & & 0 & *
\end{array}\right]_{k \times k-1} \quad \leftarrow \text { upper hessenberg matrix. }
\end{aligned}
$$

Now suppose we are at $k t h$ step. We have

$$
\begin{aligned}
\left\|r_{k}\right\|_{2}=\left\|b-A x_{k}\right\|_{2} & =\left\|A\left(x-x_{0}+x_{0}-x_{k}\right)\right\|_{2} \\
& =\| r_{0}-A \underbrace{\left(x_{k}-x_{0}\right.}_{=V_{k} y}) \|_{2}
\end{aligned}
$$

Since $r_{0}=\beta v_{1} e_{1}, \beta=\left\|r_{0}\right\|_{2}$, and V_{i} is an orthonormal basis

$$
\begin{aligned}
&\left\|r_{k}\right\|_{2}=\left\|V_{k}^{T}\left(r_{0}-A V_{k} y\right)\right\|_{2} \\
&=\left\|\beta e_{1}-V_{k}^{T} \cdot V_{k+1} H_{k+1 \times k} y\right\|_{2}=\| \\
& \beta e_{1}-[H]_{[1: k] \times[1: k]} y \\
& \| \\
& \bar{H}_{k}
\end{aligned} \|
$$

Our goal now is to find y that satisfies

$$
\min _{x \in x_{0}+K_{k}}\|b-A x\| \equiv \min _{y \in R^{k}}\left\|r_{0}-A V_{k} y\right\| \equiv \min _{y \in R^{k}}\left\|\beta e_{1}-\bar{H}_{k} y\right\|_{2}-(+++)
$$

Now the Gmres algorithm can be read as following

$$
\begin{aligned}
& \text { ALGORITHM 3.4.2. gmresa }(x, b, A, \epsilon, k \max , \rho) \\
& \text { 1. } r=b-A x, v_{1}=r /\|r\|_{2}, \rho=\|r\|_{2}, \beta=\rho, k=0 \\
& \text { 2. While } \rho>\epsilon\|b\|_{2} \text { and } k<k \max \text { do } \\
& \text { (a) } k=k+1 \\
& \text { (b) for } j=1, \ldots, k \\
& h_{j k}=\left(A v_{k}\right)^{T} v_{j} \\
& \text { (c) } v_{k+1}=A v_{k}-\sum_{j=1}^{k} h_{j k} v_{j} \\
& \text { (d) } h_{k+1, k}=\left\|v_{k+1}\right\|_{2} \\
& \text { (e) } v_{k+1}=v_{k+1} /\left\|v_{k+1}\right\|_{2} \\
& \text { (f) } e_{1}=(1,0, \ldots, 0)^{T} \in R^{k+1} \\
& \text { Minimize }\left\|\beta e_{1}-H_{k} y^{k}\right\|_{R^{k+1}} \text { over } R^{k} \text { to obtain } y^{k} \text {. } \\
& \text { (g) } \rho=\left\|\beta e_{1}-H_{k} y^{k}\right\|_{R^{k+1}} \text {. } \\
& \text { 3. } x_{k}=x_{0}+V_{k} y^{k} \text {. }
\end{aligned}
$$

The convergence analysis is similar to the convergence analysis for CG. We leave the analysis to readers.

Theorem 1: Let $A=V A V^{-1}$ be a nonsingular diagnoalizable matrix and x_{k} be the $k t h$ GMRES iteration. Then for all $p_{k} \in P_{k}$

$$
\frac{\left\|r_{k}\right\|_{2}}{\left\|r_{r}\right\|_{2}} \leq K_{2}(v) \max _{z \in \sigma(A)}\left|p_{k}(z)\right|
$$

(Remark1:
A is normal \Rightarrow Vis orthonormal

$$
\Rightarrow \text { the condition number } \mathrm{K}_{2}(v)=1
$$

If A is not normal, it is not clear how to estimate $\mathrm{K}_{2}(v)$)

Remark2: Proconditioning is generally needed to accerlatethe convergence rate. Moreover, due to possible lose of orthogonality in the Gram-Schmidt process. (no guarantee that $A v_{i} \notin \operatorname{span}\left\{v_{1} \cdots v_{n}\right\} \Rightarrow$ breakdown \Rightarrow Arnoldi process can't generate v_{i+1}
"Restart" is also generally needed in GMRES.

Remark3: The storage cost for the upper hessnberg martix H grows linearly with the number of iteration. Restarting strategy also can reduce the storage cost of H matrix.

By applying rotation matrices to H one can easily solve the above minimization problem.

From the block B_{1}, we can form $R_{1}=\left[\begin{array}{ccc}c_{1} & s_{1} \\ -s_{1} & c_{1} & \\ \hline & & I\end{array}\right],\left\|\mathrm{R}_{1}\right\|=1$. We have $\mathrm{R}_{1} H=\left[\begin{array}{llll}* & \widetilde{h_{12}} & & \\ 0 & \widetilde{h_{22}} & \widetilde{h_{23}} & \ldots \\ 0 & \ldots \\ 0 & \widetilde{h_{32}} & h_{33} & \ldots \\ \vdots & & & \ddots \\ 0 & & & \\ & & & \\ \hline\end{array}\right]$

From the block B_{2}, we can obtain $\mathrm{R}_{2}=$

$$
\left[\begin{array}{c|cc|c}
& & & \\
\hline & c_{2} & s_{2} & \\
& -s_{2} & c_{2} & \\
\hline & & & I
\end{array}\right],\left\|\mathrm{R}_{2}\right\|=1
$$

By repeatly applying the rotation matrices, we have

$$
\beta \mathrm{e}_{1}-H_{k} y=\underbrace{\bar{R}_{k}^{*}}_{\substack{\text { rotation } \\
\text { matrices }}} \cdot \underbrace{\left(\beta \overline{R_{k}} e_{1}-\left[\begin{array}{cc}
\ddots & * \\
0 & \ddots
\end{array}\right] y\right)}_{\substack{\text { upper-triangular } \\
\text { linear system }}} \text {, here } \bar{R}_{k}=R_{k} R_{k-1} \cdots R_{2} R_{1}
$$

Now one can apply the backward substition to solve the upper triangular linear system.
Moreover,

$$
\left\|\beta e_{1}-H_{k} y\right\|=|\beta \underbrace{\left(\overline{R_{k}} e_{1}\right)_{k}}_{(k+1) \text { ht component of } \overline{R_{k} e_{1}}}|,
$$

the quantity can be used in checking the stopping tolerence.

The GMRES algorithm can be rewritten as following

```
Algorithm 3.5.1. gmres \((x, b, A, \epsilon, k m a x, \rho)\)
1. \(r=b-A x, v_{1}=r /\|r\|_{2}, \rho=\|r\|_{2}, \beta=\rho\),
    \(k=0 ; g=\rho(1,0, \ldots, 0)^{T} \in R^{k \max +1}\)
2. While \(\rho>\epsilon\|b\|_{2}\) and \(k<k \max\) do
    (a) \(k=k+1\)
    (b) \(v_{k+1}=A v_{k}\)
    for \(j=1, \ldots k\)
        i. \(h_{j k}=v_{k+1}^{T} v_{j}\)
        ii. \(v_{k+1}=v_{k+1}-h_{j k} v_{j}\)
    (c) \(h_{k+1, k}=\left\|v_{k+1}\right\|_{2}\)
    (d) Test for loss of orthogonality and reorthogonalize if necessary.
    (e) \(v_{k+1}=v_{k+1} /\left\|v_{k+1}\right\|_{2}\)
    (f) i. If \(k>1\) apply \(Q_{k-1}\) to the \(k\) th column of \(H\).
        ii. \(\nu=\sqrt{h_{k, k}^{2}+h_{k+1, k}^{2}}\).
        iii. \(c_{k}=h_{k, k} / \nu, s_{k}=-h_{k+1, k} / \nu\)
        \(h_{k, k}=c_{k} h_{k, k}-s_{k} h_{k+1, k}, h_{k+1, k}=0\)
        iv. \(g=G_{k}\left(c_{k}, s_{k}\right) g\).
    (g) \(\rho=\left|(g)_{k+1}\right|\).
3. Set \(r_{i, j}=h_{i, j}\) for \(1 \leq i, j \leq k\).
    Set \((w)_{i}=(g)_{i}\) for \(1 \leq i \leq k\).
    Solve the upper triangular system \(R y^{k}=w\).```

